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ABSTRACT

This research presents a new method to improve analytical
model fidelity for non-linear systems.  The approach
investigates several mechanisms to assist the analyst in
updating an analytical model based on experimental data
and statistical analysis of parameter effects.  The first is a
new approach at data reduction called feature extraction.
This is an expansion of the update metrics to include specific
phenomena or character of the response that is critical to
model application.  This is an extension of the classical
linear updating paradigm of utilizing the eigen-parameters or
FRF’s to include such devices as peak acceleration, time of
arrival or standard deviation of model error.  The next
expansion of the updating process is the inclusion of
statistical based parameter analysis to quantify the effects of
uncertain or significant effect parameters in the construction
of a meta-model.  This provides indicators of the statistical
variation associated with parameters as well as confidence
intervals on the coefficients of the resulting meta-model.
Also included in this method is the investigation of linear
parameter effect screening using a partial factorial variable
array for simulation.  This is intended to aid the analyst in
eliminating from the investigation the parameters that do not
have a significant variation effect on the feature metric.
Finally an investigation of the model to replicate the
measured response variation is examined.

NOMENCLATURE

The recommended ‘Standard Notation for Modal Testing &
Analysis’ is used throughout this paper, see Reference [1].

1 MOTIVATION

Current model updating methods in structural dynamics are
general based on linear assumptions and do not have a
quantifiable confidence index of model components.  Several
methods use either the measured eigen-parameters or
FRFs.  These techniques commonly attempt to either map
the experimental information to the model space or the
converse.  This results in a confounding of system
information through the data expansion or condensation.
Identified errors are associated with specific parameters or

physical regions of a model.  There is normally little
evaluation, from either a Design of Experiments (DoE) or
statistical approach to quantify the model update mechanism
for a range of applications and confidence intervals

Development of a new method based on use of response
‘features’ and a DoE approach parameter variation to
updating analytical models is examined.  This method is
applicable to time-varying non-linear systems where
classical methods often do not succeed.  This method also
provides for confidence indications of model components.

A ‘feature’ is an identified quantity from the response data.
This could be as simple as the peak level of a single
response record to a more coupled metric such as the
standard deviation of model error over the entire response
space.  The former is one of the metric evaluated in this
paper and the latter is currently under investigation for a
different model.  A ‘feature’, by its nature, is a general term
and is specified by the analyst.  Under this guideline the
traditional update choices of eigen-parameters would qualify
as features, though their application is only meaningful for
linear systems.

2 METHOD

A flowchart of the proposed method is shown in Figure 1.
This development in this paper will follow this guide.  The
method is iterative in nature and the selection of features is
dependent on the analyst’s goals and insights.  In some
instances, iterations will be performed within steps and in
most cases at least some redefinition/refinement of
parameters and their levels is necessary.
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Figure 1. Model Updating Method Overview

The following sections step though this process, Section 3
examines Blocks 1-2, Section 4 covers Blocks 3-4 and
Section 5 discusses Blocks 5-8.

3 EXPERIMENTAL DEFINITION

In this Section, a brief description of the impact test
experiment performed in the summer of 1999 at Los Alamos
National Laboratory is provided. The application is a high-
frequency shock that features a component characterized by
a nonlinear, visco-elastic material behavior. The
experimental setup and the corresponding modeling are
summarized. More details can be obtained from References
[2] and [3].  Issues such as the variability of the experiment,
the model-based sensitivity study, the statistical parameter
effect analysis and the optimization of the numerical model
are introduced and briefly discussed.
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Figure 2. LANL Impact Test Assembly

3.1 Experiment Setup

The impact test consists of dropping from various heights a
carriage (drop table) to which are attached a layer of hyper-
elastic material and a steel cylinder. Upon impact on a
concrete floor, a shock wave is generated that propagates to
the hyper-elastic layer. It compresses the steel cylinder to
cause elastic and plastic strains during a few milli-seconds.
Figure 2 illustrates the cylinder/pad/carriage assembly. A
photograph of the test setup is shown in Figure 3.
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Figure 3. LANL Impact Test Set-up

It can be observed from Figure 3, that four acceleration
measurements are collected during each test. The input
acceleration is measured on the top surface of the carriage
and three output accelerations are measured on top of the
steel cylinder.  Another important feature of the experiment
is the double bolt used to tighten the cylinder and foam (see
Figure 3).  This assembly technique generates a pre-load
that depends on the amount of torque applied.  As explained
in the following, the pre-load value turns out to be a critical
parameter of the numerical simulation.  Unfortunately, it was
not measured during the experiments, therefore, defining an
important source of uncertainty and variability.

3.2 Purpose of the Experiment

The primary purpose of this test is to infer from the
measured input/output acceleration data the ‘best possible’
material model.

The difficulty of recasting this inverse problem as a
conventional finite element model-updating problem comes
from the following facts:

1) Nonlinearity such as the hyper-foam material and
contact must be handled by defining appropriate
‘features’ from the system’s response;

2) Parameter variability and uncertainty about the
experiment must be identified and propagated
throughout the forward calculations;



Prior to performing any optimization of the numerical model,
the expensive computer simulations must be replaced by
equivalent, fast running ‘meta-models’ that capture all
dominant parameter effects yet remain computationally
simple [4].  A meta-model in this context is a mapping of the
relation between the parameter variation and the
synthesized response feature.  In an ideal case, a meta
model represents the same relation that the large scale,
often Finite or Boundary Element, model but with a much
smaller form.  This results in a computationally efficient
mechanism to base updates on, hence a meta-model is
often called a ‘fast-running’ parameter model.

3.3 Variability

Since we were concerned with environmental variability and
we suspected that several sources of uncertainty would
contaminate the experiment, the impact tests were repeated
several times to collect multiple data sets from which the
repeatability could be assessed. Acceleration signals
measured during these tests are depicted in Figures 4-5.
The carriage is dropped from an initial height of 13 inches
(0.33 meters) and the hyper-foam pad used in this
configuration is 0.25 inch thick (6.3 mm). A blow-up of the
peak acceleration signals collected during ten ‘identical’ tests
at sensor #1 is shown in Figure 5.
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Figure 5. Variability of the Acceleration Response

Overall, it can be seen that peak values vary by 4.4% while
the corresponding times of arrival vary by 0.6% only.1

Although small, ignoring this variability of the peak response
may result into predictions erroneous by several hundred
g’s, which may yield catastrophic consequences for the
design purpose.

4 PARAMETER SELECTION AND LEVEL DEFINITION

Following identification of ‘features’, selection of design
variables is performed.  This process blends two primary
considerations, mechanisms that will likely influence the
feature and quantities that are difficult to quantify or control
in a physical experiment.

4.1 Definition of initial parameter set

The initial eight variables chosen for this experimentation
were;

A. Angle 1 (impact angle of drop-table) varied from 0 to 2
degree initially, refined to 0 to 1.

B. Angle 2 (impact angle of drop-table, perpendicular to
Angle 1) varied from 0 to 2 degree initially, refined to 0
to 1.

C. Bolt Pre-load varied from 0 to 500 psi.
D. Dilation of the stress axis of the visco-elastic model

initially varied from .8 to 1.2.
E. Dilation of the strain axis of the visco-elastic model,

initially varied from .8 to 1.2, refined to .8 to 1.
F. Scaling of input (calibration of sensor), varied from .9 to

1.1.
G. Friction coefficient between steel and visco-elastic

components, initially varied from 0 to 1.
H. Bulk Viscosity scale factor (defines deformation of visco-

elastic elements), initially varied from 0 to 1

These initial ranges were selected primarily based on
experimental considerations and a desire to span as
much of the design space as reasonable.  These were
later refined to reflect two main necessities.  When
Variable 5 (strain dilation) was above 1 the simulation
software produced unrealistic or foreshortened output.
Variables 1 and 2 required small perturbations (10-2

deg) from zero to accommodate simulation numerical
singularities..

4.2 Simulation Model Development

In an effort to match the test data, several finite element
models were developed by varying, among other things, the
angles of impact, the amount of bolt pre-load, the material’s
constitutive law and the amount of friction at the interface
between various components. Introducing two independent
angles of impact was important for capturing the asymmetry
of the acceleration response.2 Table 1 summarizes the input

                                                            
1 Defined as the ratio of the standard deviation to the mean
value.
2 A cylinder/pad/carriage assembly that impacts the floor
perfectly horizontally would generate three identical
responses. Since this was clearly not observed when
comparing the acceleration signals collected during ten
“identical” tests, it was concluded that a small free-play in the
alignment of the central collar had to be introduced in the
numerical model.



parameters that define the numerical simulation. They
consist of physical, deterministic quantities such as the
material model; physical, stochastic quantities (such as the
bolt pre-load); and numerical coefficients (such as the bulk
viscosity that controls the rate of deformation of the volume
elements used in the discretization).

Table 1. Statistical Distributions

Variable
Number

Physical
Description

Did This
Parameter

Vary
From Test to

Test?

Assumed
Statistical

Distribution

A First Angle of
Impact Very Likely Uniform

B Second Angle
of Impact Very Likely Uniform

C Bolt Pre-load Very Likely Uniform

D Scaling for
Stress Values No1 Uniform

E Scaling for
Strain Values No1 Uniform

F
Scaling for

Input
Acceleration

Likely Uniform

G Friction
Coefficient No2 Uniform

H Linear Bulk
Viscosity No2 Uniform

1 The same foam pad was used during testing. These
coefficients (#D and #E) should therefore be constant.

2 These variables (#G and #H) are numerical
coefficients introduced in the simulation for stabilizing
the solution. They should therefore be constant

Figure 6. 3D Model of the LANL Drop-test.

Figure 6 illustrates the finite element model used for
numerical simulation. The analysis program used for these
calculations is HKS/Abaqus-Explicit, a general-purpose
package for finite element modeling of nonlinear structural
dynamics [5].  It features an explicit time integration

algorithm, which is convenient when dealing with nonlinear
material behavior, potential sources of impact or contact,
and high frequency excitations. The model is composed of
963 nodes, 544 C3D8R volume elements and two contact
pairs located at the cylinder/pad interface and the
pad/carriage interface. This modeling yields a total of 2,889
degrees of freedom composed of structural translations in
three directions and Lagrange multipliers defined for
handling the contact constraints. A typical analysis running
on a single processor of the Laboratory’s ASCI platform
BlueMountain3 is executed in approximately 10 minutes of
CPU time.

Figure 7. Full Factorial Design of Computer Experiments
(8 variables, 2 levels).

Figure 7 illustrates the total variability observed when the
eight variables defined in Table 1 are varied. To analyze the
variability, a fully populated factorial design of computer
experiments is investigated where each variable is set either
to its lower bound or to its upper bound and all possible
combinations of input variables are defined. Therefore, a
total of 28 = 256 numerical simulations must be analyzed.

It is clear from Figures 4 and 7 that the variability of the
numerical simulation is much greater than the variability
observed during testing. As a result, the first step of test-
analysis correlation consists in designing a ‘screening’
experiment that must achieve the following two objectives.
First, the range of variation of each input parameter must be
narrowed down in a manner that stays consistent with test
results. Second, the main effects of the experiment must be
identified in a statistical manner as opposed to performing a
local sensitivity study.

It is emphasized that multi-level full factorial analyses would
typically not be accessible for complex engineering
applications due to the lack of time or computational power
[6]. This is the reason why other designs of experiments are
analyzed in the following Sections. The Taguchi, orthogonal
array designs used below provide essentially the same
information at a fraction of the computational requirement.

                                                            
3 The computing module of the Accelerated Strategic
Computing Initiative (ASCI) platform BlueMountain is a
cluster of 64 Silicon Graphics Origin2000 computers, each
composed of 128 R10010 chips.



4.3 Array Construction

To extract the parameters that have the most significant
impact on the response features the relation was examined
using an Analysis of Variation (ANOVA) approach.  The
parameter levels for the analytical simulation (Abaqus/FEA)
were determined by defining probability distributions and
ranges for each of the candidates (Table 2).  The initial
investigation used three non-overlapping test matrices.  The
first, OA27, was an orthogonal (Taguchi L27) array for three
levels and the eight chosen factors with a total of 27 runs[7].
The next case, OA81, was an orthogonal array with 81 runs.
Finally the last set of the first ensemble was a two level full
factorial, FF256, with 256 runs.

The essential premise is that by using a subset of the design
space (OA27 or OA81), the dominant main effects could be
determined and the parameter set could then be down-
selected for further analysis and creation of a response
surface model.  In these tests, the dominant character of
OA27 and OA81 were compared with the results of FF256.
It is critical to the application of this approach that a well-
chosen subset of the design space is shown to be sufficient
for parameter count reduction.  In cases where the number
of parameters is initially large, creation of a Full Factorial
Analysis (FFA) is impractical if not impossible.  Also, typically
it is only prudent to use a two-level FFA design to keep the
number of runs to a tractable amount.  This results in
information at the boundary of the design space, but not
much about the behavior structure within.  This is analogous
to the numerical integration methods where evaluation points
are chosen inside the interval to improve performance over
boundary evaluation methods.

Table 2. Design of Experiments Based on Orthogonal
Arrays (3 Levels)1

Variable
Number

Interval 1
(Lower; Mid-
point; Upper)

Interval 2
(Lower; Mid-
point; Upper)

Interval 3
(Lower; Mid-
point; Upper)

A (0.0; 0.167;
0.333)

(0.333; 0.5;
0.667)

(0.667; 0.883;
1.0)

B (0.0; 0.167;
0.333)

(0.333; 0.5;
0.667)

(0.667; 0.883;
1.0)

C (0.0; 83.3;
167.0)

(167.0; 250.0;
333.3)

(333.3; 416.7;
500.0)

D (0.8; 0.867;
0.933)

(0.933; 1.0;
1.067)

(1.067; 1.133;
1.2)

E (0.8; 0.833;
0.867)

(0.867; 0.9;
0.933)

(0.933; 0.967;
1.0)

F (0.9; 0.933;
0.967)

(0.967; 1.0;
1.03)

(1.03; 1.07;
1.1)

G (0.0; 0.167;
0.333)

(0.333; 0.5;
0.667)

(0.667; 0.883;
1.0)

H (0.0; 0.167;
0.333)

(0.333; 0.5;
0.667)

(0.667; 0.883;
1.0)

1 Experiments are designed by selecting three
equal-probability intervals for each input parameter
and selecting the mid-point of each interval. Mid-
point values are assembled into a fractional
factorial design.
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Figure 8. FEA Response Variability, Location 2

Figure 8 shows the variability of the OA81 simulation results.
This also spans the experimental variations as the FF256
did, but with much better placement of variable evaluations
and less runs.

5 STATISTICAL ANALYSIS OF DATA/MODEL
SYNTHESIS

Once the simulation is complete it is now appropriate to
investigate the significant parameters and develop a model
between parameter variation and response feature variation.
This is conducted in three phases.  First the parameter set is
down-selected, that is the dominant variables are identified
and retained while less significant ones are reduced out.
Next new variable studies are done with a higher number of
variables levels and a full factorial approach to develop
response surfaces and to extract higher order effects without
aliasing.  Finally based on the parameter variation to
response variation model/response surface set, simulation
model update requirements are estimated.

5.1 Down-selection

The FEA simulation in this analysis has a self arresting
feature that discontinues execution if the dilation of the
viscoelastic elements is such that the solution would be
suspect if continued.  This results in a total of six (6) distinct
cases to investigate.  The cases with the suffix ‘r’ denote a
reduced set where the runs that were foreshortened were
eliminated.

‘Dominant’ parameters are determined through an ANOVA
approach using the statistical analysis software package
Design-Expert 6.0/Stat-Ease [8].  The model that is initially fit
to the data is a model that is linear in all eight parameters.
This is done because the OA27 set only had sufficient runs
for linear (or main) effect analysis.  This is consistent with
the desire to use a subset of the full factorial array for large-
scale problems.  The main effects with statistically significant
contributions were then ranked in order of precedence for
down-selection.  Statistical significance is this case is those
parameters whose effect on response feature variability is
greater than would be explained by a normal distribution of
noise.   Results are summarized in Table 3.



Table 3. Dominant Parameters

OA27 OA27r OA81 OA81r FF256 FF256r
Peak
G
Loc
1

C,H
A, C,
B, F

C, A,
F, B,
H

C, A,
B, F

A, C,
H, B,
E, G

C, A,
B, F, G

TOA
1

C, A,
B, F,
G, H

C, F,
A, E

C, A,
G, F

C, E,
A, F

C, F,
A, G,
E, B

C, A,
F, E, B

Peak
G
Loc
2

C, H
C, F,
B, G

C, F,
H,

C, F,
A, G
E, H

C, H,
F, E,
G, B

C, F,
B, G, E

TOA
2

C, F,
G, A,
B

C, E,
F, G,
B, A

C, G,
F, E,
A

C, E,
F, G,
B, A

C, F,
G, E

C, E,
F, G,
A, B

Peak
G,
Loc
3

H
C, A,
B

C, A,
B, F,
H

C, A,
B, F,
H

C, B,
A, H,
E

C, A,
B, F, G

TOA
3

C, B,
F

C, B,
F, E

C, B,
F, H

C, B,
F, E

C, B,
F, G,
H

C, B,
F, E

If points are then assigned to ranking (4 points 1st, 3 points
2nd, 2 points 3rd, 1 point 4th, 0 higher) and summed over each
test and location, selection of parameters to be retained for
model updating and further study can be made.  Tables 4
and 5 summarize the parameter contributions scores
obtained with the 3 designs.

Table 4. Parameter Contribution Scores, Sorted by Dataset

OA27 OA27r OA81 OA81r FF256 FF2
56r

total

A 4 9 9 10 8 9 49
B 5 9 6 7 7 9 43
C 20 23 24 24 23 24 138
D 0 0 0 0 0 0 0
E 0 5 1 7 2 5 20
F 6 11 11 10 10 11 59
G 2 2 5 2 4 2 17
H 10 0 3 0 5 0 18

Table 5. Parameter Contribution Scores, Sorted by Feature

P G 1 TOA 1 P G 2 TOA 2 P G 3 TOA 3 total
A 17 15 2 1 14 0 49
B 8 2 4 0 11 18 43
C 22 24 24 24 20 24 138
E 0 5 1 11 0 3 20
F 5 11 14 14 3 12 59
G 0 3 3 10 0 1 17
H 5 0 8 0 5 2 18

From Table 4, clearly D can be reduced out without a effect
on the system response, also since H only appears when
there are discrepant runs, it is probably a good candidate for
elimination.  The two other that look promising for elimination
are G and E.  It seems from this analysis that A, B, C, and F
are the parameters that merit further investigation, with C
clearly being dominant.

It seems from Table 5 that some parameter contributions are
definitely more sensitive to location (A, B, E, G) while others

are not (C, F, H).  This says that when selecting responses
of a system we must sample the geometry as much as
feasible.  Also from the second table in this set, it is clear
that some variables are linked to types of measurement (g’s
or seconds).  For example H is almost strictly associated
with peak acceleration, while E has a tight bonding to the
time of arrival.  In the final recommendation, it appears that
both of these should be eliminated from the model.

5.2 Response Synthesis

Two sets of follow-on full factorial simulation ensembles
were then conducted.  The first used the four dominant
variables (A, B, C, F) at four levels each, resulting in 256
sets or response data.  The second included the top five
variables (A, B, C, E, F) at three levels each, resulting in 243
evaluations.  The two resulting models (quadratic or two-
factor-interaction) were then compared for their ability to
estimate the peak response and time of arrival for location 2.
These features were selected because they most closely
matched the observed response character of the
experiment.  Only peak acceleration will be shown here
since it best demonstrated the differences.
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The four variable array produces better results (in fact in all
six features) than the five variable array.  As seen in Figure
9, both models predict the peak response well, though the
estimates associate with the four variable set (denoted with
a star, *) are clustered more tightly around the ideal
functional line.  The five variable set (denoted with a ◊) is
more dispersed about the ideal.

 Figure 10 shows the error between the actual and the model
directly.  It is clear from the exploded view that the model
with five variables has greater error variance.
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Figure 11. Histograms of Model Error in Peak
Acceleration Prediction

In Figure 11, a comparison of error histograms is presented.
As evident, the error variance and standard deviations are
lower for the four variable array model (4VM).  Specifically,
the standard deviation for the error in the 4VM is 22.47,
while comparable index for the 5VM is 40.84.  This indicates
two things.  First the addition of the fifth variable (and
corresponding reduction of one parameter level) did not
improve the quality of model.  Second the four level model is
better at approximating the system even when its parametric
model is limited to second order.  It should be noted that
while a third order function can be fit to the 4VM results, it
was not, so that it could be directly compared to the 5VM
which is limited to second order function approximations.

A very positive and encouraging result here is that the
smaller model was better, that greatly simplifies
construction/analysis of response surfaces and optimization
of the model variables.  This also shows the down-selection
process worked well.

5.3 Construction of Meta-Models

The next step is to infer from test data the optimal values of
the input parameters. We briefly introduce the procedure
followed when the investigation is restricted to four
parameters: the two angles of impact (A, B), the bolt pre-
load (C) and the input scaling (F).

Since a smaller number of input parameters are retained (4
out of 8), a localized computer experiment can be designed
to provide a better resolution in the area of interest. The area
of interest is here defined as the region in the multi-
dimensional feature space where responses measured

during testing are located. As mentioned previously, a full
factorial matrix designed from a Taguchi array formed of four
levels for each input parameter is analyzed. Then, fast
running models are fit to the data. Equation (1) illustrates
one of the models typically obtained for the peak
acceleration response at sensor #2:

































































































−
−

−
−
−

−

=

Ibolt

I2

bolt2

21

2
bolt

2
2

2
1

I

bolt

2

1

T

peak
2

s*P
s*a

P*a
a*a

P
a
a
s

P
a
a
1

1.5
452.4

0.5
665.7

0.0006
307.1
391.3

2,552.8
2.4

288.4
43.6

1,538.2

x&&

                   (1)

Instead of fitting multi-dimensional polynomials, statistical
models are preferred because in addition to yielding
computationally efficient meta-models, they also provide
confidence intervals that can be used for assessing the
model’s goodness-of-fit. For example, each coefficient of the
polynomial shown in equation (2) is associated to a statistics
that shows how dominant the corresponding effect is.
Therefore, equation (2) defines a family of models that can
be re-sampled to account for omitted sources of uncertainty
(round-off errors, environmental variability, etc.). Re-
sampling the model essentially means that decisions would
be based on properties of ensembles rather than a single
model [9]. In addition, statistical models can be refined to
optimize the statistical significance of each individual effect
contribution, which may be more important than maximizing
the overall goodness-of-fit to the data.

Figure 12. Optimization of the Meta-Model

Figure 12 illustrates a 2D response surface obtained from
equation (2). The mean acceleration response obtained from



the data collected at sensor #2 is shown as a star. A
straightforward optimization provides the optimal values of
the input parameters. In this case, a pre-load equal to 200
psi (1.38 x 106 N/m2) is obtained together with an impact
angle equal to 0.7 degrees. Note that such an approach
provides an optimized model capable of reproducing the
mean response obtained from test data. It does not
guarantee that the variance or other higher statistical
moments are captured. Other optimization strategies are
discussed in the remainder to address this important issue.

5.4 Objective Function based Optimization

To quantify the application of the model to explain the
experimental response variation, an optimization was
performed to adjust the analytical model to ‘best-match’ the
physical test results.  The objective function chosen was the
distance squared between the experimental measured
feature and the analytical prediction based on the meta
model using variables A, B, C, and F.  Explicitly the general
form of objective function was,

( )2

( , , , )

( , , , )

A B C F

A B C F

J

ExpFeature AnalFeature

∆ ∆ ∆ ∆ =

− ∆ ∆ ∆ ∆
 [2]

where ExpFeature is the experimentally measured feature
and AnalFeature is the feature derived from the meta-model
based on the Variable set A, B, C, and F.

This was performed for two features (Peak 2 G Level and
TOA 2) on all thirty experimental responses (three locations,
ten tests) that were represented by the analytical model.
The results are shown in the figure below.  The solution
search was conducted with an unconstrained optimization in
Matlab using the ‘fminsearch’ command [10].
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Figure 13. Comparison of Parameter Adjustments based
on Peak G and TOA, Output 2

Several points can be raised by inspection of Figure 13.
First, it is necessary to use more than one feature to update
a model. Clearly, the TOA feature in more sensitive to
changes in C than the Peak Acceleration feature.  Also the
spread of variation is not uniform indicating that the relative
sensitivities are also distinct.  The mean (bias) adjustments
are also somewhat different but the variations are close to

zero in all but variable F.  This says the range of variability
should expanded for A-C and collapsed some for F.
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Figure 14.  Comparison Between Analytical and
Experimental Response Variation

Figure 18 confirms that the proposed procedure works well
for this application.  The experimental and corresponding
‘meta-model optimized’ analytical response has
approximately the same variation and response character.
This validates the final analytical model and the update
procedure well.

6 CONCLUSIONS

This research presents a new method to improve analytical
model fidelity for non-linear systems.  The approach
investigates several mechanisms to assist the analyst in
updating an analytical model based on experimental data
and statistical analysis of parameter effects.  The first is a
new approach at data reduction called feature extraction.
The next expansion is the inclusion of statistical based
parameter analysis to quantify the effects of uncertain or
significant effect parameters in the construction of a meta-
model.  The results from the linear screening, model
refinement, variable variation and the response synthesis all
are very promising.  This should greatly aid the analyst in the
update of large scale and non-linear models over the present
methods.
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